Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher.
Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?
Some links on this page may take you to non-federal websites. Their policies may differ from this site.
-
Free, publicly-accessible full text available December 9, 2025
-
Aerosols and clouds are key components of the marine atmosphere, impacting the Earth’s radiative budget with a net cooling effect over the industrial era that counterbalances greenhouse gas warming, yet with an uncertain amplitude. Here we report recent advances in our understanding of how open ocean aerosol sources are modulated by ocean biogeochemistry and how they, in turn, shape cloud coverage and properties. We organize these findings in successive steps from ocean biogeochemical processes to particle formation by nucleation and sea spray emissions, further particle growth by condensation of gases, the potential to act as cloud condensation nuclei or ice nucleating particles, and finally, their effects on cloud formation, optical properties, and life cycle. We discuss how these processes may be impacted in a warming climate and the potential for ocean biogeochemistry—climate feedbacks through aerosols and clouds.more » « less
-
Abstract. We present a framework for estimating concentrations of episodicallyelevated high-temperature marine ice nucleating particles (INPs) in the seasurface microlayer and their subsequent emission into the atmosphericboundary layer. These episodic INPs have been observed in multipleship-based and coastal field campaigns, but the processes controlling theirocean concentrations and transfer to the atmosphere are not yet fullyunderstood. We use a combination of empirical constraints and simulationoutputs from an Earth system model to explore different hypotheses forexplaining the variability of INP concentrations, and the occurrence ofepisodic INPs, in the marine atmosphere. In our calculations, we examine the following two proposed oceanic sources of high-temperature INPs: heterotrophic bacteria and marine biopolymer aggregates (MBPAs). Furthermore, we assume that the emission of these INPs is determined by the production of supermicron sea spray aerosol formed from jet drops, with an entrainment probability that is described by Poisson statistics. The concentration of jet drops is derived from the number concentration of supermicron sea spray aerosol calculated from model runs. We then derive the resulting number concentrations of marine high-temperature INPs (at 253 K) in the atmospheric boundary layer and compare their variability to atmospheric observations of INP variability. Specifically, we compare against concentrations of episodically occurring high-temperature INPs observed during field campaigns in the Southern Ocean, the Equatorial Pacific, and the North Atlantic. In this case study, we evaluate our framework at 253 K because reliable observational data at this temperature are available across three different ocean regions, but suitable data are sparse at higher temperatures. We find that heterotrophic bacteria and MBPAs acting as INPs provide only apartial explanation for the observed high INP concentrations. We note,however, that there are still substantial knowledge gaps, particularlyconcerning the identity of the oceanic INPs contributing most frequently toepisodic high-temperature INPs, their specific ice nucleation activity, andthe enrichment of their concentrations during the sea–air transfer process. Therefore, targeted measurements investigating the composition of these marine INPs and drivers for their emissions are needed, ideally incombination with modeling studies focused on the potential cloud impacts ofthese high-temperature INPs.more » « less
-
Abstract To resolve the various types of biological ice nuclei (IN) with atmospheric models, an extension of the empirical parameterization (EP) (Phillips et al. 2008; 2013) is proposed to predict the active IN from multiple groups of primary biological aerosol particles (PBAPs). Our approach is to utilize coincident observations of PBAP sizes, concentrations, biological composition, and ice-nucleating ability. The parameterization organizes the PBAPs into five basic groups: fungal spores, bacteria, pollen, viral particles, plant/animal detritus, algae, and their respective fragments. This new biological component of the EP was constructed by fitting predicted concentrations of PBAP IN to those observed at the Amazon Tall Tower Observatory (ATTO) site located in the central Amazon. The fitting parameters for pollen and viral particles, plant/animal detritus, which are much less active as IN than fungal and bacterial groups, are constrained based on their ice nucleation activity from the literature. The parameterization has empirically derived dependencies on the surface area of each group (except algae), and the effects of variability in their mean sizes and number concentrations are represented via their influences on the surface area. The concentration of active algal IN is estimated from literature-based measurements. Predictions of this new biological component of the EP are consistent with previous laboratory and field observations not used in its construction. The EP scheme was implemented in a 0D parcel model. It confirms that biological IN account for most of the total IN activation at temperatures warmer than −20°C and at colder temperatures dust and soot become increasingly more important to ice nucleation.more » « less
-
The Impact of Divalent Cations on the Enrichment of Soluble Saccharides in Primary Sea Spray AerosolField measurements have shown that sub-micrometer sea spray aerosol (SSA) is significantly enriched in organic material, of which a large fraction has been attributed to soluble saccharides. Existing mechanistic models of SSA production struggle to replicate the observed enhancement of soluble organic material. Here, we assess the role for divalent cation mediated co-adsorption of charged surfactants and saccharides in the enrichment of soluble organic material in SSA. Using measurements of particle supersaturated hygroscopicity, we calculate organic volume fractions for molecular mimics of SSA generated from a Marine Aerosol Reference Tank. Large enhancements in SSA organic volume fractions (Xorg > 0.2) were observed for 50 nm dry diameter (dp) particles in experiments where cooperative ionic interactions were favorable (e.g., palmitic acid, Mg2+, and glucuronic acid) at seawater total organic carbon concentrations (<1.15 mM C) and ocean pH. Significantly smaller SSA organic volume fractions (Xorg < 1.5 × 10−3) were derived from direct measurements of soluble saccharide concentrations in collected SSA with dry diameters <250 nm, suggesting that organic enrichment is strongly size dependent. The results presented here indicate that divalent cation mediated co-adsorption of soluble organics to insoluble surfactants at the ocean surface may contribute to the enrichment of soluble saccharides in SSA. The extent to which this mechanism explains the observed enhancement of saccharides in nascent SSA depends strongly on the concentration, speciation, and charge of surfactants and saccharides in the sea surface microlayer.more » « less
-
Abstract Global climate models (GCMs) are challenged by difficulties in simulating cloud phase and cloud radiative effect over the Southern Ocean (SO). Some of the new‐generation GCMs predict too much liquid and too little ice in mixed‐phase clouds. This misrepresentation of cloud phase in GCMs results in weaker negative cloud feedback over the SO and a higher climate sensitivity. Based on a model comparison with observational data obtained during the Southern Ocean Cloud Radiation and Aerosol Transport Experimental Study, this study addresses a key uncertainty in the Community Earth System Model version 2 (CESM2) related to cloud phase, namely ice formation in pristine remote SO clouds. It is found that sea spray organic aerosols (SSOAs) are the most important type of ice nucleating particles (INPs) over the SO with concentrations 1 order of magnitude higher than those of dust INPs based on measurements and CESM2 simulations. Secondary ice production (SIP) which includes riming splintering, rain droplet shattering, and ice‐ice collisional fragmentation as implemented in CESM2 is the dominant ice production process in moderately cold clouds with cloud temperatures greater than −20°C. SIP enhances the in‐cloud ice number concentrations (Ni) by 1–3 orders of magnitude and predicts more mixed‐phase (with percentage occurrence increased from 15% to 21%), in better agreement with the observations. This study highlights the importance of accurately representing the cloud phase over the pristine remote SO by considering the ice nucleation of SSOA and SIP processes, which are currently missing in most GCM cloud microphysics parameterizations.more » « less
An official website of the United States government

Full Text Available